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 41.1. IDENTIFY:   For a particle in a cubical box, different values of ,X Yn n  and Zn  can give the same energy. 

SET UP:   
2 2 2 2 2

, , 2
( ) .

2X Y Z

X Y Z
n n n

n n nE
mL

π+ +
=

=  

EXECUTE:   (a) 2 2 2 3.X Y Zn n n+ + =  This only occurs for 1, 1, 1X Y Zn n n= = =  and the degeneracy is 1. 

(b) 2 2 2 9.X Y Zn n n+ + =  Occurs for 2, 1, 1,X Y Zn n n= = =  for 1, 2, 1X Y Zn n n= = =  and for 
1, 1, 2.X Y Zn n n= = =  The degeneracy is 3. 

EVALUATE:   In the second case, three different states all have the same energy. 
 41.2. IDENTIFY:   Use an electron in a cubical box to model the hydrogen atom. 

SET UP:   
2 2

1,1,1 2
3 .
2

E
mL

π= =  
2 2

2,1,1 2
6 .
2

E
mL

π= =  
2 2

2
3 .
2

E
mL

πΔ = =  3 34 .
3

L aπ=  

1/3
114 8.527 10  m.

3
L aπ −⎛ ⎞= = ×⎜ ⎟

⎝ ⎠
 

EXECUTE:   
2 34 2

17
31 11 2

3 (1.055 10  J s) 2.49 10  J 155 eV.
2(9.109 10  kg)(8.53 10  m)

E π −
−

− −
× ⋅

Δ = = × =
× ×

 In the Bohr model, 

2
13.6 eV .E

n
= −  The energy separation between the 2n =  and 1n =  levels is 

Bohr 2 2
1 1 3(13.6 eV) (13.6 eV) 10.2 eV.

41 2
E ⎛ ⎞Δ = − = =⎜ ⎟

⎝ ⎠
 

EVALUATE:   A particle in a box is not a good model for a hydrogen atom. 
 41.3. IDENTIFY:   The energy of the photon is equal to the energy difference between the states. We can use this 

energy to calculate its wavelength. 

SET UP:   
2 2

1,1,1 2
3 .
2

E
mL

π= =  
2 2

2,2,1 2
9 .
2

E
mL

π= =  
2 2

2
3 .E
mL
πΔ = =  .hcE

λ
Δ =  

EXECUTE:   
2 34 2

17
31 11 2

3 (1.055 10  J s) 5.653 10  J.
(9.109 10  kg)(8.00 10  m)

E π −
−

− −
× ⋅Δ = = ×

× ×
 hcE

λ
Δ =  gives 

34 8
9

17
(6.626 10 J s)(2.998 10 m/s) 3.51 10 m 3.51 nm.

5.653 10 J
hc

E
λ

−
−

−
× ⋅ ×

= = = × =
Δ ×

 

EVALUATE:   This wavelength is much shorter than that of visible light. 
 41.4. IDENTIFY:   Use the probability function for a particle in a three-dimensional box to find the points where 

it is a maximum. 

(a) SET UP:   1, 1, 1.X Y Zn n n= = =  
3

2 2 2 2sin sin sin .
2
L x y z

L L L
π π πψ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
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EXECUTE:   2ψ  is maximum where sin 1,x
L

π = ±  sin 1y
L

π = ± , and sin 1.z
L

π = ±  
2

x
L

π π=  and .
2
Lx =  

The next larger value is 

3
2

x
L

π π=  and 

3 ,
2
Lx =  but this is outside the box. Similar results obtain for y and z, 

so 2ψ  is maximum at the point /2.x y z L= = =  This point is at the center of the box. 

(b) SET UP:   2, 2, 1.X Y Zn n n= = =  
3

2 2 2 22 2sin sin sin .
2
L x y z

L L L
π π πψ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
 

EXECUTE:   2ψ  is maximum where 2sin 1,x
L
π = ±  2sin 1,y

L
π = ±  and sin 1.z

L
π = ±  2

2
x

L
π π=  and .

4
Lx =  

2 3
2

x
L
π π

=  and 3 .
4
Lx =  Similarly, 

4
Ly =  and 3 .

4
L  As in part (a), .

2
Lz =  2ψ  is a maximum at the four 

points , , ,
4 4 2
L L L⎛ ⎞

⎜ ⎟
⎝ ⎠

 3, , ,
4 4 2
L L L⎛ ⎞

⎜ ⎟
⎝ ⎠

 3 , ,
4 4 2
L L L⎛ ⎞

⎜ ⎟
⎝ ⎠

 and 3 3, , .
4 4 2
L L L⎛ ⎞

⎜ ⎟
⎝ ⎠

 

EVLUATE:   The points are located symmetrically relative to the center of the box. 
 41.5. IDENTIFY:   A particle is in a three-dimensional box. At what planes is its probability function zero? 

SET UP:   
3

2 2 2 2
2,2,1

2 2sin sin sin .
2
L x y z

L L L
π π πψ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
 

EXECUTE:   
2

2,2,1 0ψ =  for 2 0, , 2 , .x
L
π π π= …  0x =  and x L=  correspond to walls of the box. 

2
Lx =  

is the other plane where 
2

2,2,1 0.ψ =  Similarly, 
2

2,2,1 0ψ =  on the plane .
2
Ly =  The 2sin z

L
π  factor is 

zero only on the walls of the box. Therefore, for this state 
2

2,2,1 0ψ =  on the following two planes other 

than walls of the box: 
2
Lx =  and .

2
Ly =  

3
2 2 2 2

2,1,1
2sin sin sin

2
L x y z

L L L
π π πψ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
 is zero only on one plane ( /2)x L=  other than the walls 

of the box. 
3

2 2 2 2
1,1,1 sin sin sin

2
L x y z

L L L
π π πψ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
 is zero only on the walls of the box; for this state there are 

zero additional planes. 
EVALUATE:   For comparison, (2,1,1) has two nodal planes, (2,1,1) has one nodal and (1,1,1) has no nodal 
planes. The number of nodal planes increases as the energy of the state increases. 

 41.6. IDENTIFY:   A proton is in a cubical box approximately the size of the nucleus. 

SET UP:   
2 2

1,1,1 2
3 .
2

E
mL

π= =  
2 2

2,1,1 2
6 .
2

E
mL

π
=

=  
2 2

2
3 .
2

E
mL

πΔ = =  

EXECUTE:   
2 34 2

13
27 14 2

3 (1.055 10  J s)
9.85 10  J 6.15 MeV

2(1.673 10  kg)(1.00 10  m)
E

π −
−

− −
× ⋅

Δ = = × =
× ×

 

EVALUATE:   This energy difference is much greater than the energy differences involving orbital electrons. 
 41.7. IDENTIFY:   The possible values of the angular momentum are limited by the value of n. 

SET UP:   For the N shell 4, 0 –1, ,n l n m l= ≤ ≤ ≤  1
2 .sm = ±  

EXECUTE:   (a) The smallest l is 0.l =  ( 1) ,L l l= + =  so min 0.L =  

(b) The largest l is 1 3n − =  so 34 2
max 3(4) 2 3 3 65 10  kg m /s.L . −= = = × ⋅= =  

(c) Let the chosen direction be the z-axis. The largest m is 3.m l= =  
34 2

,max 3 3 16 10  kg m /s.zL m . −= = = × ⋅= =  
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(d) 1
2 .zS = ± =  The maximum value is 35 2/2 5 27 10  kg m /s.zS . −= = × ⋅=  

(e) 
1
2 1 .
3 6

z

z

S
L

= =
=
=

 

EVALUATE:   The orbital and spin angular momenta are of comparable sizes. 
 41.8. IDENTIFY and SET UP:   ( 1) .L l l= + = .z lL m= =  0,1, 2, , 1.l n= −… 0, 1, 2,..., .lm l= ± ± ±  cos / .zL Lθ =  

EXECUTE:   (a) 0:l = 0,L = 0.zL = 1:l = 2 ,L = = , 0, .zL = −= = 2:l = 6 ,L = = 2 , , 0, , 2 .zL = − −= = = =  

3: 2 3 , 3 , 2 , , 0, , 2 , 3 .zl L L= = = − − −= = = = = = = 4: 2 5 , 4 , 3 , 2 , , 0, , 2 , 3 , 4 .zl L L= = = − − − −= = = = = = = = =  

(b) 0:L =  θ  not defined. 2 :L = =  45.0 , 90.0 , 135.0 .° ° °  6 :L = =  35.3 , 65.9 , 90.0 , 114.1 , 144.7 .° ° ° ° °  

2 3 :L = =  30.0 , 54.7 , 73.2 , 90.0 , 106.8 , 125.3 , 150.0 .° ° ° ° ° ° °  

2 5 :L = =  26.6 , 47.9 , 63.4 , 77.1 , 90.0 , 102.9 , 116.6 , 132.1 , 153.4 .° ° ° ° ° ° ° ° °  
(c) The minimum angle is 26.6° and occurs for 4,l =  4.lm = +  The maximum angle is 153.4° and occurs 
for 4,l =  4.lm = −  

EVALUATE:   There is no state where 
G
L  is totally aligned along the z-axis. 

 41.9. IDENTIFY and SET UP:   The magnitude of the orbital angular momentum L is related to the quantum 
number l by Eq. (41.22): ( 1) , 0, 1, 2,L l l l= + == …  

EXECUTE:   
22 34 2

34
4.716 10  kg m /s( 1) 20

1 055 10  J s
Ll l

−

−

⎛ ⎞× ⋅⎛ ⎞+ = = =⎜ ⎟⎜ ⎟ ⎜ ⎟. × ⋅⎝ ⎠ ⎝ ⎠=
 

And then ( 1) 20l l + =  gives that 4.l =  
EVALUATE:   l must be integer. 

 41.10. IDENTIFY and SET UP:   ( 1) .L l l= + =  .z lL m= =  0, 1, 2, , .lm l= ± ± ±…  cos / .zL Lθ =  
EXECUTE:   (a) max max( ) 2, so ( ) 2 .l zm L= = =  

(b) ( 1) 6 2.45 .L l l= + = == = =  L is larger than max( ) .zL  

(c) The angle is arccos arccos ,
6

z lL m
L

⎛ ⎞⎛ ⎞ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 and the angles are, for 2 to 2, 144.7 ,l lm m= − = °  

114.1 , 90.0 ,° ° 65.9 , 35.3 .° °  
EVALUATE:   The minimum angle for a given l is for .lm l=  The angle corresponding to lm l=  will 
always be smaller for larger .l  

 41.11. IDENTIFY and SET UP:   The angular momentum L is related to the quantum number l by Eq. (41.22), 
( 1) .L l l= + =  The maximum l, max ,l  for a given n is max 1.l n= −  

EXECUTE:   For max2, 1 and 2 1 414 .n l L=  = = = .= =  

For max20, 19 and (19)(20) 19 49 .n l L= = = = .= =  

For max200, 199 and (199)(200) 199 5 .n l L=  = = = .= =  
EVALUATE:   As n increases, the maximum L gets closer to the value n=  postulated in the Bohr model. 

 41.12. IDENTIFY:   0,1, 2, , 1.l n= −…  0, 1, 2, , .lm l= ± ± ±…  

SET UP:   2
13.60 eV .nE

n
= −  

EXECUTE:   The ( , )ll m  combinations are (0, 0), (1, 0), (1, 1), (2, 0),±  (2, 1), (2, 2), (3, 0),± ±  

(3, 1), (3, 2), (3, 3), (4, 0), (4, 1), (4, 2), (4, 3) and (4, 4)± ± ± ± ± ± ± a total of 25. 

(b) Each state has the same energy (n is the same), 13.60 eV 0.544 eV.
25

− = −  
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EVALUATE:   The number of , ll m  combinations is 2.n  The energy depends only on n, so is the same for 
all , ll m  states for a given n. 

 41.13. IDENTIFY:   For the 5g state, 4,l =  which limits the other quantum numbers. 

SET UP:   0, 1, 2,  , .lm l= ± ± ±…  g means 4.l = cos / ,zL Lθ =  with ( 1)L l l= + =  and .z lL m= =  

EXECUTE:   (a) There are eighteen 5g states: 0, 1, 2, 3, 4,lm = ± ± ± ±  with 1
2sm = ±  for each. 

(b) The largest θ  is for the most negative .lm  2 5 .L = =  The most negative zL  is 4 .zL = − =  
4cos

2 5
θ −= =

=
 and 153.4 .θ = °  

(c) The smallest θ  is for the largest positive ,lm  which is 4.lm = +  4cos
2 5

θ = =
=

 and 26 6 ..θ = °  

EVALUATE:   The minimum angle between 

G
L  and the z-axis is for lm l= +  and for that ,lm  cos .

( 1)
l

l l
θ =

+
 

 41.14. IDENTIFY:   The probability is 
/2 2 2

10
4 .

a
sP r drψ π= ∫  

SET UP:   Use the expression for the integral given in Example 41.4. 

EXECUTE:   (a) 
/22 2 3 1

2 /
3

0

4 51 0.0803.
2 2 4 2

a
r aar a r a eP e

a

−
−⎡ ⎤⎛ ⎞

= − − − = − =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

(b) Example 41.4 calculates the probability that the electron will be found at a distance less than a from the 
nucleus. The difference in the probabilities is 2 1 1 2(1 5 ) (1 (5/2) ) (5/2)( 2 ) 0.243.e e e e− − − −− − − = − =  
EVALUATE:   The probability for distances from /2a  to a is about three times the probability for distances 
between 0 and /2.a  This agrees with Figure 41.8 in the textbook; ( )P r  is maximum for .r a=  

 41.15. IDENTIFY:   2 2 / 2
1 30 0

1( ) (4 ).
a a r a

sP a dV e r dr
a

ψ π
π

−= =∫ ∫  

SET UP:   From Example 41.4, 
2 2 3

2 2 / 2 / .
2 2 4

r a r aar a r ar e dr e− −⎛ ⎞−= − −⎜ ⎟⎜ ⎟
⎝ ⎠

∫  

EXECUTE:   
2 2 3 3 3 3 3

2 2 / 2 / 2 0 2
3 3 30

0

4 4 4( ) 1 5 .
2 2 4 2 2 4 4

a
a r a r aar a r a a a a aP a r e dr e e e e

a a a
− − − −⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− −= = − − = − − + = −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∫  

EVALUATE:   ( ) 1,P a <  as it must be. 
 41.16. IDENTIFY:   Require that ( ) ( 2 )φ φ πΦ = Φ +  

SET UP:   1 2 1 2( )i x x ix ixe e e+ =  
EXECUTE:   ( 2 ) 2( 2 ) .l l lim im ime e eφ π φ πφ π +Φ + = =  

2 cos( 2 ) sin( 2 ).lim
l le m i mπ π π= +  

2 1lime π =  if lm  is an 
integer. 
EVALUATE:   If, for example, 1

2 ,lm =  2 cos( ) sin( ) 1lim ie e iπ π π π= = + = −  and ( ) ( 2 ).φ φ πΦ = −Φ +  But if 

1,lm =  2 2 cos(2 ) sin(2 ) 1lim ie e iπ π π π= = + = +  and ( ) ( 2 ),φ φ πΦ = Φ +  as required. 
 41.17. IDENTIFY:   Apply B .U BμΔ =  

SET UP:   For a 3p state, 1l =  and 0, 1.lm = ±  

EXECUTE:   (a) 
5

5
B

(2.71 10 eV) 0.468 T.
(5.79 10 eV/T)

UB
μ

−

−
×= = =

×
 

(b) Three: 0, 1.lm = ±  
EVALUATE:   The 1lm = +  level will be highest in energy and the 1lm = −  level will be lowest. The 

0lm =  level is unaffected by the magnetic field. 
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 41.18. IDENTIFY:   Apply Eq. (41.36). 
SET UP:   5

B 5.788 10  eV/Tμ −= ×  

EXECUTE:   (a) 5 5
B (5.79 10 eV/T)(0.400 T) 2.32 10 eV.E Bμ − −Δ = = × = ×  

(b) 2lm = −  the lowest possible value of .lm  
(c) The energy level diagram is sketched in Figure 41.18. 
EVALUATE:   The splitting between lm  levels is independent of the n values for the state. The splitting is 
much less than the energy difference between the 3n =  level and the 1n =  level. 

 

 

Figure 41.18 
 

 41.19. IDENTIFY and SET UP:   The interaction energy between an external magnetic field and the orbital angular 
momentum of the atom is given by Eq. (41.36). The energy depends on lm  with the most negative lm  
value having the lowest energy. 
EXECUTE:   (a) For the 5g level, 4l =  and there are 2 1 9l + =  different lm  states. The 5g level is split 
into 9 levels by the magnetic field. 
(b) Each lm  level is shifted in energy an amount given by B .lU m Bμ=  Adjacent levels differ in lm  by 
one, so B .U BμΔ =  

19 34
24 2

B 31
(1 602 10  C)(1 055 10  J s) 9 277 10  A m

2 2(9 109 10  kg)
e
m

μ
− −

−
−

. × . × ⋅= = = . × ⋅
. ×

=  

24 2 24 19 5
B (9 277 10  A/m )(0.600 T) 5.566 10  J(1 eV/1.602 10  J) 3.47 10  eVU Bμ − − − −Δ = = . × = × × = ×  

(c) The level of highest energy is for the largest ,lm  which is 4 B4; 4 .lm l U Bμ= = =  The level of lowest 
energy is for the smallest ,lm  which is 4 B4; 4 .lm l U Bμ−= − = −  = −  The separation between these two 

levels is 5 4
4 4 B8 8(3 47 10  eV) 2 78 10  eV.U U Bμ − −

−− = = . × = . ×  
EVALUATE:   The energy separations are proportional to the magnetic field. The energy of the 5n =  level 
in the absence of the external magnetic field is 2( 13 6 eV)/5 0 544 eV,− . = − .  so the interaction energy with 
the magnetic field is much less than the binding energy of the state. 

 41.20. IDENTIFY:   The effect of the magnetic field on the energy levels is described by Eq. (41.36).  In a 
transition lm  must change by 0 or 1.±  
SET UP:   For a 2p state, lm  can be 0, 1.± For a 1s state, lm  must be zero. 
EXECUTE:   (a) There are three different transitions that are consistent with the selection rules. The initial 

lm  values are 0, 1;±  and the final lm  value is 0. 
(b) The transition from 0 to 0l lm m= =  produces the same wavelength (122 nm) that was seen without the 
magnetic field. 
(c) The larger wavelength (smaller energy) is produced from the 1 to 0l lm m= − =  transition. 
(d) The shorter wavelength (greater energy) is produced from the 1 to 0l lm m= + =  transition. 
EVALUATE:   The magnetic field increases the energy of the 1lm =  state, decreases the energy for 1lm = −  
and leaves the 0lm =  state unchanged. 

 41.21. IDENTIFY and SET UP:   For a classical particle .L Iω=  For a uniform sphere with mass m and radius R, 

22 ,
5

I mR=  so 22 .
5

L mR ω⎛ ⎞= ⎜ ⎟
⎝ ⎠

 Solve for ω  and then use v rω=  to solve for v. 
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EXECUTE:   (a) 3
4

L = =  so 22 3
5 4

mR ω = =  

34
30

2 31 17 2
5 3/4 5 3/4(1 055 10  J s) 2 5 10  rad/s
2 2(9 109 10  kg)(1 0 10  m)mR

ω
−

− −
. × ⋅= = = . ×

. × . ×
=  

(b) 17 30 13(1 0 10  m)(2 5 10  rad/s) 2 5 10  m/sv rω −= = . × . × = . ×  
EVALUATE:   This is much greater than the speed of light c, so the model cannot be valid. 

 41.22. IDENTIFY:   Apply Eq. (41.40), with .
2zS = − =  

SET UP:   5
B 5.788 10  eV/T.

2
e
m

μ −= = ×=  

EXECUTE:   (a) B
(2.00232)(2.00232) .

2 2 2
eU B B
m

μ−⎛ ⎞⎛ ⎞= + = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

=  

5 5(2.00232) (5.788 10 eV/T)(0.480 T) 2.78 10 eV.
2

U − −= − × = − ×  

(b) Since 1, 0n l= =  so there is no orbital magnetic dipole interaction. But if 1n ≠  there could be orbital 
magnetic dipole interaction, since l n<  would then allow for 0.l ≠  
EVALUATE:   The energy of the 1

2sm = −  state is lowered in the magnetic field. The energy of the 
1
2sm = +  state is raised. 

 41.23. IDENTIFY and SET UP:   The interaction energy is ,U = − ⋅ B
GGμ  with zμ  given by Eq. (41.40). 

EXECUTE:   ,zU Bμ= − ⋅ = +B
GGμ  since the magnetic field is in the negative z-direction. 

(2 00232) , so (2 00232)
2 2z z z
e eS U S B
m m

μ ⎛ ⎞ ⎛ ⎞= − . = − .⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

, so 2 00232
2z s s
eS m U m B
m

⎛ ⎞= = − . ⎜ ⎟
⎝ ⎠

==  

5
B 5 788 10  eV/T

2
e
m

μ −= = . ×=  

B2 00232 sU m Bμ= − .  

The 1
2sm = +  level has lower energy. 

B B
1 1 1 12 00232 2 00232
2 2 2 2s sU U m U m B Bμ μ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ = = − − = + = − . − − + = + .⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 

5 42 00232(5 788 10  eV/T)(1 45 T) 1 68 10  eVU − −Δ = + . . × . = . ×  
EVALUATE:   The interaction energy with the electron spin is the same order of magnitude as the 
interaction energy with the orbital angular momentum for states with 0.lm ≠  But a 1s state has 

0 and 0,ll m= =  so there is no orbital magnetic interaction. 
 41.24. IDENTIFY:   The transition energy EΔ  of the atom is related to the wavelength λ  of the photon by 

.hcE
λ

Δ =  For an electron in a magnetic field the spin magnetic interaction energy is B .Bμ±  Therefore the 

effective magnetic field is given by B2E BμΔ =  when EΔ  is produced by the hyperfine interaction. 

SET UP:   5
B 5.788 10 eV/T.μ −= ×  

EXECUTE:   (a) 
15 8

6
(4.136 10 eV s)(3.00 10 m/s) 21cm,

(5.9 10 eV)
hc
E

λ
−

−
× ⋅ ×= = =

Δ ×
 

8
9(3.00 10 m/s) 1.4 10  Hz,

0.21 m
cf
λ

×
= = = ×  a short radio wave. 
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(b) The effective field is 2
B/2 5.1 10 T,B E μ −≅ Δ = ×  far smaller than that found in Example 41.7 for spin-

orbit coupling. 
EVALUATE:   The level splitting due to the hyperfine interaction is much smaller than the level splittings 
due to the spin-orbit interaction. 

 41.25. IDENTIFY and SET UP:   j can have the values 1/2l +  and 1/2.l −  
EXECUTE:   If j takes the values 7/2 and 9/2 it must be that 1/2 7/2l − =  and 8/2 4.l = =  The letter that 
labels this l is g. 
EVALUATE:   l must be an integer. 

 41.26. IDENTIFY:   Fill the subshells in the order of increasing energy. An s subshell holds 2 electrons, a  
p subshell holds 6 and a d subshell holds 10 electrons. 
SET UP:   Germanium has 32 electrons. 
EXECUTE:   The electron configuration is 2 2 6 2 6 2 10 21 2 2 3 3 4 3 4 .s s p s p s d p  
EVALUATE:   The electron configuration is that of zinc ( 30)Z =  plus two electrons in the 4p subshell. 

 41.27. IDENTIFY:   The ten lowest energy levels for electrons are in the 1n =  and 2n =  shells. 
SET UP:   1

20,1, 2, , 1. 0, 1, 2, , . .l sl n m l m= − = ± ± ± = ±… …  

EXECUTE:   1 1
2 21, 0, 0, : 2 states. 2, 0, 0, : 2 states.l s l sn l m m n l m m= = = = ± = = = = ±

1
22, 1, 0, 1, : 6 states.l sn l m m= = = ± = ±  

EVALUATE:   The ground state electron configuration for neon is 2 2 61 2 2 .s s p  The electron configuration 
specifies the n and l quantum numbers for each electron. 

 41.28. IDENTIFY:   Write out the electron configuration for ground-state carbon. 
SET UP:   Carbon has 6 electrons. 
EXECUTE:   (a) 2 2 21 2 2 .s s p  
(b) The element of next larger Z with a similar electron configuration has configuration 

2 2 6 2 21 2 2 3 3 .s s p s p  14Z =  and the element is silicon. 
EVALUATE:   Carbon and silicon are in the same column of the periodic table. 

 41.29. IDENTIFY:   Write out the electron configuration for ground-state beryllium. 
SET UP:   Beryllium has 4 electrons. 
EXECUTE:   (a) 2 21 2s s  
(b) 2 2 6 21 2 2 3 .s s p s  12Z =  and the element is magnesium. 

(c) 2 2 6 2 6 21 2 2 3 3 4 .s s p s p s  20Z =  and the element is calcium. 
EVALUATE:   Beryllium, calcium and magnesium are all in the same column of the periodic table. 

 41.30. IDENTIFY and SET UP:   Apply Eq. (41.45). The ionization potential is ,nE−  where nE  is the level energy 
for the least tightly bound electron. 
EXECUTE:   As electrons are removed, for the outermost electron the screening of the nucleus by the 
remaining electrons decreases. The ground state electron configuration of magnesium is 2 2 6 21 2 2 3 .s s p s  

For a 3s electron the other electrons screen the nucleus and eff 1.Z ≈  For Mg+  the electron configuration 

is 2 2 61 2 2 3s s p s  and the 10 inner electrons screen the nucleus from the 3s electron. eff 2.Z ≈  For 2Mg +  

the electron configuration is 2 2 61 2 2 .s s p  The screening for an outershell electron is further reduced and 
now it is a 2n =  rather than an 3n =  electron that will be removed in ionization. 
EVALUATE:   Both screening and the shell structure of the atom determine the successive ionization 
potentials. 

 41.31. IDENTIFY and SET UP:   The energy of an atomic level is given in terms of n and effZ  by Eq. (41.45), 
2
eff
2 (13 6 eV).n

ZE
n

⎛ ⎞
= − .⎜ ⎟⎜ ⎟

⎝ ⎠
 The ionization energy for a level with energy nE−  is .nE+  
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EXECUTE:   eff5 and Z 2.771n = =  gives 
2

5 2
(2 771) (13 6 eV) 4.18 eV

5
E .

= − . = −  

The ionization energy is 4.18 eV. 
EVALUATE:   The energy of an atomic state is proportional to 2

eff .Z  
 41.32. IDENTIFY and SET UP:   Apply Eq. (41.45). 

EXECUTE:   For the 4s  state, eff4.339 eV and 4 ( 4.339) /( 13.6) 2.26.E Z= − = − − =  Similarly, 

eff 1.79Z =  for the 4p state and 1.05 for the 4d state. 
EVALUATE:   The electrons in the states with higher l tend to be farther away from the filled subshells and 
the screening is more complete. 

 41.33. IDENTIFY and SET UP:   Use the exclusion principle to determine the ground-state electron configuration, 
as in Table 41.3. Estimate the energy by estimating eff ,Z  taking into account the electron screening of the 
nucleus. 
EXECUTE:   (a) 7Z =  for nitrogen so a nitrogen atom has 7 electrons. 

2N +
 has 5 electrons: 2 21 2 2 .s s p  

(b) eff 7 4 3Z = − =  for the 2p level. 
2 2
eff
2 2

3(13.6 eV) (13 6 eV) 30.6 eV
2n

ZE
n

⎛ ⎞
= − = − . = −⎜ ⎟⎜ ⎟

⎝ ⎠
 

(c) 15Z =  for phosphorus so a phosphorus atom has 15 electrons. 
2P +  has 13 electrons: 2 2 6 21 2 2 3 3s s p s p  

(d) eff 15 12 3Z = − =  for the 3p level. 
2 2
eff
2 2

3(13.6 eV) (13 6 eV) 13.6 eV
3n

ZE
n

⎛ ⎞
= − = − . = −⎜ ⎟⎜ ⎟

⎝ ⎠
 

EVALUATE:   In these ions there is one electron outside filled subshells, so it is a reasonable approximation 
to assume full screening by these inner-subshell electrons. 

 41.34. IDENTIFY and SET UP:   Apply Eq. (41.45). 

EXECUTE:   (a) 2
2 eff eff

13.6 eV , so 1.26.
4

E Z Z= − =  

(b) Similarly, eff 2.26.Z =  
EVALUATE:   (c) effZ  becomes larger going down a column in the periodic table. Screening is less 
complete as n of the outermost electron increases. 

 41.35. IDENTIFY and SET UP:   Estimate effZ  by considering electron screening and use Eq. (41.45) to calculate 
the energy. effZ  is calculated as in Example 41.9. 

EXECUTE:   (a) The element Be has nuclear charge 4.Z = The ion Be+  has 3 electrons. The outermost 
electron sees the nuclear charge screened by the other two electrons so eff 4 2 2.Z = − =  

2
eff
2 (13 6 eV)n

ZE
n

⎛ ⎞
= − .⎜ ⎟⎜ ⎟

⎝ ⎠
 so 

2

2 2
2 (13.6 eV) 13.6 eV
2

E = − = −  

(b) The outermost electron in Ca+  sees a eff 2.Z =  
2

4 2
2 (13 6 eV) 3 4 eV
4

E = − . = − .  

EVALUATE:   For the electron in the highest l-state it is reasonable to assume full screening by the other 
electrons, as in Example 41.9. The highest l-states of Be ,+  Mg , Ca ,+ +  etc. all have a eff 2.Z =  But the 
energies are different because for each ion the outermost sublevel has a different n quantum number. 

 41.36. IDENTIFY and SET UP:   Apply Eq. (41.48) and solve for Z. 

EXECUTE:   2( 1) (10.2 eV).KE Zα ≅ −
37.46 10 eV1 28.0,

10.2 eV
Z ×

≈ + = which corresponds to the element 

Nickel (Ni). 
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EVALUATE:   We use 1Z −  rather than Z in the expression for the transition energy, in order to account for 
screening by the other K-shell electron. 

 41.37. IDENTIFY and SET UP:   Apply Eq. (41.47). E hf=  and .c f λ=  

EXECUTE:   (a) 15 2 1720: (2.48 10 Hz)(20 1) 8.95 10 Hz.Z f= = × − = ×  
8

15 17 10
17

3.00 10  m/s(4.14 10 eV s)(8.95 10  Hz) 3.71 keV.  3.35 10  m.
8.95 10  Hz

cE hf
f

λ− −×
= = × ⋅ × = = = = ×

×
 

(b) 18 1027: 1.68 10  Hz. 6.96 keV. 1.79 10  m.Z f E λ −= = × = = ×  

(c) 18 1148:  5.48 10  Hz, 22.7 keV, 5.47 10  m.Z f E λ −= = × = = ×  
EVALUATE:   f and E increase and λ  decreases as Z increases. 

 41.38. IDENTIFY:   The energies of the x rays will be equal to the energy differences between the shells. From its 
energy, we can calculate the wavelength of the x ray. 

SET UP:   .hcE
λ

Δ =  A Kα  x ray is produced in a L K→  transition and a Kβ  x ray is produced in a 

M K→  transition. 
EXECUTE:   :Kα 12,000 eV ( 69,500 eV) 57,500 eV.L KE E EΔ = − = − − − = +  

15 8(4 136 10  eV s)(3 00 10  m/s) 0 0216 nm.
57,500 eV

hc . . .
E

λ
−× ⋅ ×

= = =
Δ

 

: 2200 eV ( 69,500 eV) 67,300 eV.M KK E E Eβ Δ = − = − − − = +
15 8(4 136 10  eV s)(3 00 10  m/s) 0 0184 nm.
67,300 eV

hc . . .
E

λ
−× ⋅ ×

= = =
Δ

 

EVALUATE:   These wavelengths are much shorter than the wavelengths in the visible spectrum of hydrogen. 
 41.39. IDENTIFY:   The electrons cannot all be in the same state in a cubical box. 

SET UP and EXECUTE:   The ground state can hold 2 electrons, the first excited state can hold 6 electrons 
and the second excited state can hold 6. Therefore, two electrons will be in the second excited state, which 
has energy 1,1,13 .E  

EVALUATE:   The second excited state is the third state, which has energy 1,1,13 ,E  as shown in Figure 41.4. 
 41.40. IDENTIFY:   Calculate the probability of finding a particle in certain regions of a three-dimensional box. 

SET UP:   
3

2 2 2 2
1,1,1 sin sin sin

2
L x y z

L L L
π π πψ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
 

EXECUTE:   (a) 
3 /2 2 2 2

0 0 0
2 sin sin sin .

L L Lx y zP dx dy dz
L L L L

π π π⎛ ⎞ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎜ ⎟ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫ ∫ ∫  

2 2
0 0

sin sin .
2

L Ly z Ldy dz
L L

π π⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫  
/2/2 2

0 0

2 1sin sin .
2 4 2 2

LL x x L x Ldx
L L

π π
π

⎡ ⎤ ⎛ ⎞⎛ ⎞= − = ⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎝ ⎠∫  

3 32 1 1 0.500.
2 2 2
LP

L
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

(b) 
3 /2 2 2 2

/4 0 0
2 sin sin sin .

L L L

L
x y zP dx dy dz

L L L L
π π π⎛ ⎞ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎜ ⎟ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫ ∫ ∫  

2 2
0 0

sin sin .
2

L Ly z Ldy dz
L L

π π⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫  
/2/2 2

/4 /4

2 1 1sin sin .
2 4 2 4 2

LL

L L

x x L x Ldx
L L

π π
π π

⎡ ⎤ ⎛ ⎞⎛ ⎞= − = +⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎝ ⎠∫  

3 32 1 1 1 1 0.409.
2 4 2 4 2
LP

L π π
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

EVALUATE:   In Example 41.1 for this state the probability for finding the particle between 0x =  and 
/4x L=  is 0.091. The sum of this result and our result in part (b) is 0.091 0.409 0.500.+ =  This in turn 

equals the probability of finding the particle in half the box, as calculated in part (a). 
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 41.41. IDENTIFY:   Calculate the probability of finding a particle in a given region within a cubical box. 
(a) SET UP and EXECUTE:   The box has volume 3.L  The specified cubical space has volume 3( /4) .L  Its 

fraction of the total volume is 1 0.0156.
64

=  

(b) SET UP and EXECUTE:   
3 /4 /4 /42 2 2

0 0 0
2 sin sin sin .

L L Lx y zP dx dy dz
L L L L

π π π⎛ ⎞ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎜ ⎟ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫ ∫ ∫  

From Example 41.1, each of the three integrals equals 1 1 1 .
8 4 2 2 2
L L L

π π
⎛ ⎞⎛ ⎞− = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

3 3 3 3
42 1 1 1 7.50 10 .

2 2 2
LP

L π
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

EVALUATE:   Note that this is the cube of the probability of finding the particle anywhere between 0x =  

and /4.x L=  This probability is much less that the fraction of the total volume that this space represents. In 
this quantum state the probability distribution function is much larger near the center of the box than near 
its walls. 

(c) SET UP and EXECUTE:   
3

2 2 2 2
2,1,1

2sin sin sin .
2
L x y z

L L L
π π πψ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
 

3 /4 /4 /42 2 2
0 0 0

2 2sin sin sin .
L L Lx y zP dx dy dz

L L L L
π π π⎛ ⎞ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎜ ⎟ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫ ∫ ∫  

/4 /42 2
0 0

1 1 1sin sin .
2 2 2

L Ly z Ldy dz
L L

π π
π

⎡ ⎤ ⎡ ⎤ ⎛ ⎞⎛ ⎞= = −⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎝ ⎠⎝ ⎠∫ ∫  
/4 2

0
2sin .

8
L x Ldx

L
π =∫  

3 2 2 2
32 1 1 1 2.06 10 .

2 2 2 8
L LP

L π
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

EVALUATE:   This is about a factor of three larger than the probability when the particle is in the ground state. 

 41.42. IDENTIFY:   The probability is a maximum where 2ψ  is a maximum, and this is where 2 0.
x

ψ∂ =
∂

 The 

probability is zero where 2ψ  is zero. 

SET UP:   
2 2 22 2 2 2( ).x y zA x e α β γψ − + +=  To save some algebra, let 2,u x=  so that 2 2 ( , ).uue f y zαψ −=  

EXECUTE:   (a) 2 2
0 0

1 1(1 2 ) ; the maximum occurs at ,  .
2 2

u u x
u

ψ α ψ
α α

∂ = − = = ±
∂

 

(b) ψ  vanishes at 0,x =  so the probability of finding the particle in the 0x =  plane is zero. The wave 
function also vanishes for .x = ±∞  

EVALUATE:   2ψ  is a maximum at 0 0 0.y z= =  

 41.43. (a) IDENTIFY and SET UP:   The probability is 2 2with 4 .P dV dV r drψ π= =  

EXECUTE:   
2 22 2 2 2 2 2 so 4r rA e P A r e drα αψ π− −= =  

(b) IDENTIFY and SET UP:   P is maximum where 0.dP
dr

=  

EXECUTE:   
22 2( ) 0rd r e

dr
α− =  

2 22 3 22 4 0r rre r eα αα− −− =  and this reduces to 32 4 0r rα− =  
0r =  is a solution of the equation but corresponds to a minimum not a maximum. Seek r not equal to 0 so 

divide by r and get 22 4 0.rα− =  

This gives 1 .
2

r
α

=  (We took the positive square root since r must be positive.) 
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EVALUATE:   This is different from the value of r, 0,r =  where 2ψ  is a maximum. At 20,r ψ=   

has a maximum but the volume element 24dV r drπ=  is zero here so P does not have a maximum  
at 0.r =  

 41.44. IDENTIFY and SET UP:   Evaluate 2 2 2 2/ , / ,x yψ ψ∂ ∂ ∂ ∂  and 2 2/ zψ∂ ∂  for the proposed ψ  and put Eq. 
(41.5). Use that , ,

x yn nψ ψ  and 
znψ  are each solutions to Eq. (40.44). 

EXECUTE:   (a) 
2 2 2 2

2 2 22
U E

m x y z
ψ ψ ψ ψ ψ

⎛ ⎞∂ ∂ ∂− + + + =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

=  

, , 
x y zn n nψ ψ ψ  are each solutions of Eq. (40.44), so 

22
2

2
1 .

2 2
x

x x x

n
n n n

d
k x E

m dx

ψ
ψ ψ′− + ==  

22
2

2
1

2 2
y

y y y

n
n n n

d
k y E

m dy

ψ
ψ ψ− + =′

=  

22
2

2
1

2 2
z

z z z

n
n n n

d
k z E

m dz

ψ
ψ ψ− + =′

=  

2 2 21 1 1( ) ( ) ( ), 
2 2 2x y zn n nx y z U k x k y k zψ ψ ψ ψ= = + +′ ′ ′  

22 22 2 2

2 2 2 2 2 2, ,yx z

y z x z x y

nn n
n n n n n n

dd d

x dx y dy z dz

ψψ ψψ ψ ψψ ψ ψ ψ ψ ψ
⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎜ ⎟⎜ ⎟ ⎜ ⎟= = =

⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

So 
22 2 2 2 2

2
2 2 2 2

1
2 2 2

x

x y z

n
n n n

d
U k x

m mx y z dx

ψψ ψ ψ ψ ψ ψ ψ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ⎜ ⎟′− + + + = − +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

= =  

     
2 22 2

2 2
2 2

1 1
2 2 2 2

y z

y x z z x y

n n
n n n n n n

d d
k y k z

m mdy dz

ψ ψ
ψ ψ ψ ψ ψ ψ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟′ ′+ − + + − +

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

= =  

     
2 2 2 2

2 2 2 ( )
2 x y zn n nU E E E

m x y z
ψ ψ ψ ψ ψ

⎛ ⎞∂ ∂ ∂− + + + = + +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

=  

Therefore, we have shown that this ψ  is a solution to Eq. (41.5), with energy 

3
2x y z x y zn n n n n n x y zE E E E n n n ω⎛ ⎞= + + = + + +⎜ ⎟

⎝ ⎠
=  

(b) and (c) The ground state has 0,x y zn n n= = =  so the energy is 000
3 .
2

E ω= =  There is only one set of 

,x yn n  and zn  that give this energy. 
First-excited state: 

100 010 001
51, 0 or 1, 0 or 1, 0 and 
2x y z y x z z x yn n n n n n n n n E E E ω= = = = = = = = = = = = =  

There are three different sets of ,  ,  x y zn n n  quantum numbers that give this energy, so there are three 
different quantum states that have this same energy. 
EVALUATE:   For the three-dimensional isotropic harmonic oscillator, the wave function is a product of 
one-dimensional harmonic oscillator wavefunctions for each dimension. The energy is a sum of energies 
for three one-dimensional oscillators. All the excited states are degenerate, with more than one state having 
the same energy. 
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 41.45. IDENTIFY:   Find solutions to Eq. (41.5). 
SET UP:   1 1 2 2/ , / .k m k mω ω= =′ ′  Let ( )

xn xψ  be a solution of Eq. (40.44) with 

1
1 , ( )
2x yn x nE n yω ψ⎛ ⎞= +⎜ ⎟

⎝ ⎠
=  be a similar solution, and let ( )

zn zψ  be a solution of Eq. (40.44) but with z as 

the independent variable instead of x, and energy 2.
1
2zn zE n ω⎛ ⎞= +⎜ ⎟

⎝ ⎠
=  

EXECUTE:   (a) As in Problem 41.44, look for a solution of the form ( , , ) ( ) ( ) ( ).
x y zn n nx y z x y zψ ψ ψ ψ=  

Then, 
2 2

2
12

1
2 2xnE k x

m x
ψ ψ∂ ⎛ ⎞′− = −⎜ ⎟∂ ⎝ ⎠

=  with similar relations for 
2 2

2 2and . Adding,
y z
ψ ψ∂ ∂

∂ ∂
 

2 2 2 2
2 2 2

1 1 22 2 2
1 1 1

2 2 2 2

( ) ( )

x y z

x y z

n n n

n n n

E E E k x k y k z
m x y z

E E E U E U

ψ ψ ψ ψ

ψ ψ

⎛ ⎞∂ ∂ ∂ ⎛ ⎞′ ′ ′− + + = + + − − −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ⎝ ⎠⎝ ⎠
= + + − = −

=
 

where the energy E is 2 2
1 2

1( 1) ,
2x y zn n n x y zE E E E n n nω ω⎡ ⎤⎛ ⎞= + + = + + + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

=  with , andx y zn n n  all 

nonnegative integers. 

(b) The ground level corresponds to 2 2
1 2

10, and .
2x y zn n n E ω ω⎛ ⎞= = = = +⎜ ⎟

⎝ ⎠
=  The first excited level 

corresponds to 0x yn n= =  and 1,zn =  since 2 2
1 2,ω ω>  and 2 2

1 2
3 .
2

E ω ω⎛ ⎞= +⎜ ⎟
⎝ ⎠
=  

(c) There is only one set of quantum numbers for both the ground state and the first excited state. 
EVALUATE:   For the isotropic oscillator of Problem 41.44 there are three states for the first excited level 
but only one for the anisotropic oscillator. 

 41.46. IDENTIFY:   An electron is in the 5f state in hydrogen. We want to find out about its angular mometum. 
SET UP:   For the 5f state, 3. .z ll L m= = = 0,lm = 1, , . ( 1) .l L l l± ± = +… =  
EXECUTE:   (a) The largest possible lm  is 3.lm = 3 .zL = =  

(b) 2 2 2 2.x y zL L L L+ + = 2 2 23(4) 12 .L = == =  

2 2 2 2 2 212 9 3 .x x zL L L L+ = − = − == = =  

EVALUATE:   The restriction on zL  also places restrictions on xL  and .yL  

 41.47. IDENTIFY and SET UP:   To calculate the total number of states for the thn  principal quantum number shell 
we must add up all the possibilities. The spin states multiply everything by 2. The maximum l value is 
( –1),n  and each l value has (2 1) different ll m+  values. 
EXECUTE:   The total number of states is 

1 1 1
2 2

0 0 0

4( 1)( )2 (2 1) 2 1 4 2 2 2 2 2 .
2

n n n

l l l

n nN l l n n n n n
− − −

= = =

−= + = + = + = + − =∑ ∑ ∑  

(b) The 5n =  shell (O-shell) has 50 states. 
EVALUATE:   The 1n =  shell has 2 states, the 2n =  shell has 8 states, etc. 

 41.48. IDENTIFY:   The orbital angular momentum is limited by the shell the electron is in. 
SET UP:   For an electron in the n shell, its orbital angular momentum quantum number l is limited by 
0 1,l n≤ < −  and its orbital angular momentum is given by ( 1) .L l l= + =  The z-component of its angular 

momentum is ,z lL m= =  where 0, 1, , ,lm l= ± ±…  and its spin angular momentum is 3/4S = =  for all 

electrons. Its energy in the thn  shell is 2(13 6 eV)/ .nE n= − .  
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EXECUTE:   (a) ( 1) 12 3.L l l l= + = ⇒ == =  Therefore the smallest that n can be is 4, so 
2 2–(13.6eV)/  –(13.6 eV)/4 –0.8500 eV.nE n= = =  

(b) For 3, m 3, 2, 1, 0.ll = = ± ± ±  Since ,z lL m= =  the largest zL  can be is 3=  and the smallest it can be 
is 3 .− =  
(c) 3/4S = =  for all electrons. 
(d) In this case, 3, so 2, 1, 0.n l= =  Therefore the maximum that L can be is max 2(2 1) 6 .L = + == =  
The minimum L can be is zero when 0.l =  
EVALUATE:   At the quantum level, electrons in atoms can have only certain allowed values of their 
angular momentum. 

 41.49. IDENTIFY:   The total energy determines what shell the electron is in, which limits its angular momentum. 
SET UP:   The electron’s orbital angular momentum is given by ( 1) ,L l l= + =  and its total energy in the 

thn  shell is 2(13 6 eV)/ .nE n= − .  

EXECUTE:   (a) First find n: 2(13 6eV)/nE n= − .  0.5440 eV= −  which gives 5,n =  so 4, 3, 2, 1, 0.l =  

Therefore the possible values of L are given by ( 1) ,L l l= + =  giving ,0, 2 6 , 12 , 20 .L = = = = =  

(b) 2
6 6 5(13.6 eV)/6 0.3778 eV. 0.3778 eV ( 0.5440 eV) 0.1662 eVE E E E= − = − Δ = − = − − − = +  

This must be the energy of the photon, so / ,E hc λΔ =  which gives 
15 8 6/ (4.136 10 eV s)(3.00 10 m/s)/(0.1662 eV) 7.47 10 m 7470 nm,hc Eλ − −= Δ = × ⋅ × = × =  which is in the 

infrared and hence not visible. 
EVALUATE:   The electron can have any of the five possible values for its angular momentum, but it cannot 
have any others. 

 41.50. IDENTIFY:   For the N shell, 4,n =  which limits the values of the other quantum numbers. 

SET UP:   In the thn  shell, l0 1, 0, 1,  , ,  and 1/2.sl n m l m≤ < − = ± ± = ±…  The orbital angular momentum 

of the electron is ( 1)L l l= + =  and its spin angular momentum is 3/4 .S = =  
EXECUTE:   (a) For 3l =  we can have 3, 2 , 1, 0 and 1/2; for 2l sm m l= ± ± ± ± = ± =  we can have 2,lm = ±  

1, 0± and 1/2;sm = ±  for  1,l =  we can have 1, 0lm = ±  and 1/2;sm = ±  for 0,l =  we can have 0lm =  and 

1/2.sm = ±  

(b) For the N shell, 4,n =  and for an f-electron, 3,l =  giving ( 1) 3(3 1) 12 .L l l= + = + == = =  

3 , 2 , , 0,z lL m= = ± ± ±= = = =  so the maximum value is 3 .=  3/4S = =  for all electrons. 

(c) For a d-state electron, 2,l =  giving 2(2 1) 6 . ,z lL L m= + = == = =  and the maximum value of lm  is 2, 
so the maximum value of zL  is 2 .=  The smallest angle occurs when zL  is most closely aligned along the 

angular momentum vector, which is when zL  is greatest. Therefore min
2 2cos
6 6

zL
L

θ = = ==
=

 and 

min 35.3 .θ = °  The largest angle occurs when zL  is as far as possible from the L-vector, which is when zL  

is most negative. Therefore max
2 2cos
6 6

θ −= = −=
=

 and max 144 7 .θ = . °  

(d) This is not possible since 3l =  for an f-electron, but in the M shell the maximum value of l is 2. 
EVALUATE:   The fact that the angle in part (c) cannot be zero tells us that the orbital angular momentum 
of the electron cannot be totally aligned along any specified direction. 

 41.51. IDENTIFY:   The inner electrons shield part of the nuclear charge from the outer electron. 

SET UP:   The electron’s energy in the thn  shell, due to shielding, is 
2
eff
2 (13 6 eV),n

ZE
n

= − .  where effZ e  is 

the effective charge that the electron “sees” for the nucleus. 
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EXECUTE:   (a) 
2
eff
2 (13 6 eV)n

ZE
n

= − .  and 4n =  for the 4s state. Solving for effZ  gives 

2

eff
(4 )( 1 947 eV)

1.51.
13 6 eV

Z
− .

= − =
.

 The nucleus contains a charge of 11 ,e+  so the average number of 

electrons that screen this nucleus must be 11 –1.51 9.49=  electrons. 
(b) (i) The charge of the nucleus is +19e, but 17.2e is screened by the electrons, so the outer electron 
“sees” eff19 –17.2 1.8  and 1.8.e e e Z= =  

(ii) 
2 2
eff
2 2

(1 8)(13 6 eV) (13 6 eV) 2 75 eV
4n

ZE
n

.
= − . = − .  = − .  

EVALUATE:   Sodium has 11 protons, so the inner 10 electrons shield a large portion of this charge from 
the outer electron. But they don’t shield 10 of the protons, since the inner electrons are not totally 
equivalent to a uniform spherical shell. (They are lumpy.) 

 41.52. IDENTIFY:   At the r where ( )P r  has its maximum value, 
22( )

0.
d r

dr
ψ

=  

SET UP:   From Example 41.4, 22 2 2 / .r ar Cr eψ −=  

EXECUTE:   
22

2 / 2( )
(2 (2 / )).r ad r

Ce r r a
dr

ψ −= −  This is zero for . r a=  Therefore, ( )P r  has its maximum 

value at ,r a=  the distance of the electron from the nucleus in the Bohr model. 
EVALUATE:   Our result agrees with Figure 41.8 in the textbook. 

 41.53. (a) IDENTIFY and SET UP:   The energy is given by Eq. (39.14), which is identical to Eq. (41.21). The 
potential energy is given by Eq. (23.9), with q Ze= +  and 0 .q e= −  

EXECUTE:   
4 2

1 2 2
00

1 1; ( )
4(4 ) 2s

me eE U r
rππ

= − = −
= ��

 

4 2

1 2 2
00

1 1
( ) gives

4(4 ) 2s
me e

E U r
rππ

= − = −
= ��

 

2
0

2
(4 )2 2r a

me
π

= =
=�  

EVALUATE:   The turning point is twice the Bohr radius. 
(b) IDENTIFY and SET UP:   For the 1s state the probability that the electron is in the classically forbidden 

region is 
2 2

2
1 12 2

( 2 ) 4 .s sa a
P r a dV r drψ π ψ

∞ ∞
> = =∫ ∫  The normalized wave function of the 1s state of 

hydrogen is given in Example 41.4: /
1 3

1( ) .r a
s r e

a
ψ

π
−=  Evaluate the integral; the integrand is the same 

as in Example 41.4. 

EXECUTE:   2 2 /
3 2

1( 2 ) 4 r a
a

P r a r e dr
a

π
π

∞ −⎛ ⎞> = ⎜ ⎟
⎝ ⎠∫  

Use the integral formula 
2

2
2 3

2 2 ,r r r rr e dr eα α
α α α

− − ⎛ ⎞
= − + +⎜ ⎟⎜ ⎟

⎝ ⎠
∫  with 2/ .aα =  

2 2 3
2 / 4 3 3 3

3 3
2

4 4( 2 ) (2 /4)
2 2 4

r a

a

ar a r aP r a e e a a a
a a

∞
− −⎡ ⎤⎛ ⎞

> = − + + = + + +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

4 4( 2 ) 4 (13/4) 13 0 238.P r a e e− −> = = = .  
EVALUATE:   These is a 23.8% probability of the electron being found in the classically forbidden region, 
where classically its kinetic energy would be negative. 
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 41.54. IDENTIFY and SET UP:   Apply Eq. (41.45) and the concept of screening. For a level with quantum number 
n the ionization energy is .nE−  
EXECUTE:   (a) For large values of n, the inner electrons will completely shield the nucleus, so eff 1Z =  

and the ionization energy would be 2
13.60 eV .

n
 

(b) 4 2 2 10 6
350 02

13.60 eV 1.11 10 eV, (350) (350) (0.529 10  m) 6.48 10 m.
350

r a− − −= × = = × = ×  

(c) Similarly for 650,n =  5
2

13.60 eV 3.22 10 eV,
(650)

−= ×  2 10 5
650 (650) (0.529 10 m) 2.24 10 m.r − −= × = ×  

EVALUATE:   For a Rydberg atom with large n the Bohr radius of the electron’s orbit is very large. 

 41.55. /2
2 3

1( ) 2
32

r a
s

rr e
aa

ψ
π

−⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

(a) IDENTIFY and SET UP:   Let 2 2 2
2 20

4 .s sI dV r drψ π ψ
∞

= =∫  If 2sψ  is normalized then we will find 

that 1.I =  

EXECUTE:   
2 3 4

/ 2 2 /
3 3 20 0

1 1 44 2 4
32 8

r a r ar r rI e r dr r e dr
a aa a a

π
π

∞ ∞− −⎛ ⎞⎛ ⎞ ⎛ ⎞= − = − +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∫ ∫  

Use the integral formula 10
,n x

n
nx e dxα

α
∞ −

+
!=∫  with 1/ .aα =  

3 4 5
3 2

1 4 1 14(2 )( ) (3 )( ) (4 )( ) (8 24 24) 1;
88

I a a a
aa a

⎛ ⎞= ! − ! + ! = − + =⎜ ⎟
⎝ ⎠

 this 2sψ  is normalized. 

(b) SET UP:   For a spherically symmetric state such as the 2s, the probability that the electron will be 

found at 4r a<  is 
4 42 2 2

2 20 0
( 4 ) 4 .

a a
s sP r a dV r drψ π ψ< = =∫ ∫  

EXECUTE:   
3 44 2 /

3 20
1 4( 4 ) 4

8
a r ar rP r a r e dr

aa a
−⎛ ⎞

< = − +⎜ ⎟⎜ ⎟
⎝ ⎠

∫  

Let 1 2 33
1( 4 ) ( ).

8
P r a I I I

a
< = + +  

4 2 /
1 0

4
a r aI r e dr−= ∫  

Use the integral formula 
2

2
2 3

2 2r r r rr e dr eα α
α α α

− − ⎛ ⎞
= − + +⎜ ⎟⎜ ⎟

⎝ ⎠
∫  with 1/ .aα =  

4/ 2 2 3 4 3
1 0

4 ( 2 2 ) ( 104 8) .
ar aI e r a ra a e a− −⎡ ⎤= − + + = − +⎣ ⎦  

4 3 /
2 0

4 a r aI r e dr
a

−= − ∫  

Use the integral formula 
3 2

3
2 3 4

3 6 6r r r r rr e dr e
a

α α
α α α

− − ⎛ ⎞
= − + + +⎜ ⎟⎜ ⎟

⎝ ⎠
∫  with 1/ .aα =  

4/ 3 2 2 3 4 4 3
2 0

4 ( 3 6 6 ) (568 24) .
ar aI e r a r a ra a e a

a
− −⎡ ⎤= + + + = −⎣ ⎦  

4 4 /
3 2 0

1 a r aI r e dr
a

−= ∫  

Use the integral formula 
4 3 2

4
2 3 4 5

4 12 24 24r r r r r rr e dr e
a a

α α
α α α

− − ⎛ ⎞
= − + + + +⎜ ⎟⎜ ⎟

⎝ ⎠
∫  with 1/ .aα =  
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4/ 4 3 2 2 3 4 5 4 3
3 2 0

1 ( 4 12 24 24 ) ( 824 24) .
ar aI e r a r a r a ra a e a

a
− −⎡ ⎤= − + + + + = − +⎣ ⎦  

Thus 3 4
1 2 33 3

1 1( 4 ) ( ) ([8 24 24] [ 104 568 824])
8 8

P r a I I I a e
a a

−< = + + = − + + − + −  

4 41( 4 ) (8 360 ) 1 45 0 176.
8

P r a e e− −< = − = − = .  

EVALUATE:   There is an 82.4% probability that the electron will be found at 4 .r a>  In the Bohr model the 
electron is for certain at 4 ;r a=  this is a poor description of the radial probability distribution for this state. 

 41.56. IDENTIFY:   ( )P r  is a maximum or minimum when 
22( )

0.
d r

dr
ψ

=  

SET UP:   From Problem 41.55, /2
2 3

1( ) 2 .
32

r a
s

rr e
aa

ψ
π

−⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

EXECUTE:   (a) Since the given 22 2 2( ) is real, .r r rψ ψ ψ=  The probability density will be an extreme 

when 2 2 2 2( ) 2 2 0.d d dr r r r r
dr dr dr

ψ ψψ ψ ψ ψ ψ⎛ ⎞ ⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 This occurs at 0,r =  a minimum, and when 

0,ψ =  also a minimum. A maximum must correspond to 0.dr
dr
ψψ + =  Within a multiplicative constant, 

/2( ) (2 / ) ,r ar r a eψ −= −  /21 (2 /2 ) ,r ad r a e
dr a
ψ −= − −  and the condition for a maximum is 

2 2(2 / ) ( / )(2 /2 ), or 6 4 0r a r a r a r ra a− = − − + =  The solutions to the quadratic are (3 5).r a= ±  The ratio 

of the probability densities at these radii is 3.68, with the larger density at (3 5) 5.24r a a= + =  and the 

smaller density at (3 5) 0.76 .r a a= − =  The maximum of ( )P r  occurs at a value of r somewhat larger 
than the Bohr radius of 4a. 
(b) 0 at 2r aψ = =  
EVALUATE:   Parts (a) and (b) are consistent with Figure 41.8 in the textbook; note the two relative 
maxima, one on each side of the minimum of zero at 2 .r a=  

 41.57. IDENTIFY:   Use Figure 41.6 in the textbook to relate Lθ  to zL  and L: cos so arccos .z z
L L

L L
L L

θ θ ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 

(a) SET UP:   The smallest angle min( )Lθ  is for the state with the largest L and the largest .zL  This is the 
state with 1l n= −  and 1.lm l n= = −  
EXECUTE:   ( 1)z lL m n= = −= =  

( 1) ( 1)L l l n n= + = −= =  

min
( 1) ( 1) 1( ) arccos arccos arccos arccos( (1 1)/ ).
( 1) ( 1)L
n h n n n

nn nh n n
θ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −= = = = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− − ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

EVALUATE:   Note that min( )Lθ  approaches 0°  as .n → ∞  
(b) SET UP:   The largest angle max( )Lθ  is for 1l n= −  and ( 1).lm l n= − = − −  

EXECUTE:   A similar calculation to part (a) yields ( )max( ) arccos 1 1/L nθ = − −  

EVALUATE:   Note that max( )Lθ  approaches 180°  as .n → ∞  

 41.58. IDENTIFY and SET UP:   2 2 2 2.x y zL L L L+ + =  2 2( 1) .L l l= + =  .z lL m= =  

EXECUTE:   (a) 2 2 2 2 2 2 2 2 2 2( 1) so ( 1) .x y z l x y lL L L L l l m L L l l m+ = − = + − + = + −= = =  

(b) This is the magnitude of the component of angular momentum perpendicular to the z-axis. 
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(c) The maximum value is ( 1) ,l l L+ ==  when 0.lm =  That is, if the electron is known to have no  
z-component of angular momentum, the angular momentum must be perpendicular to the z-axis. The 
minimum is l=  when .lm l= ±  

EVALUATE:   For 0l ≠  the minimum value of 2 2
x yL L+  is not zero. The angular momentum vector 

cannot be totally aligned along the z-axis. For 0,l ≠  
G
Lmust always have a component perpendicular to 

the z-axis. 

 41.59. IDENTIFY:   At the value of r where ( )P r is a maximum, 0.dP
dr

=  

SET UP:   4 /
5

1( ) .
24

r aP r r e
a

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

EXECUTE:   
4

3 /
5

1 4 .
24

r adP rr e
dr aa

−⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

4
30 when 4 0; 4 .dP rr r a

dr a
= − = =  In the Bohr model, 

2
2so 4 ,nr n a r a= =  which agrees with the location of the maximum in ( ).P r  

EVALUATE:   Our result agrees with Figure 41.8. The figure shows that ( )P r  for the 2p state has a single 
maximum and no zeros except at 0r =  and .r → ∞  

 41.60. IDENTIFY:   Apply constant acceleration equations to relate zF  to the motion of an atom. 

SET UP:   According to Eq. (41.40), the magnitude of zμ  is 24 29.28 10  A m .zμ −= × ⋅  The atomic mass of 
silver is 0.1079 kg/mol.  

EXECUTE:   The time required to transit the horizontal 50 cm region is 0.500 m 0.952 ms.
525 m/sx

xt
v
Δ= = =  The 

force required to deflect each spin component by 0.50 mm is 
3

22
2 23 3 2

2 0.1079 kg/mol 2(0.50 10 m) 1.98 10  N.
6.022 10 atoms/mol (0.952 10 s)z z

zF ma m
t

−
−

−
⎛ ⎞Δ ×= = ± = ± = ± ×⎜ ⎟⎜ ⎟× ×⎝ ⎠

 Thus, the required 

magnetic-field gradient is 
22

24
1.98 10 N 21.3 T/m.
9.28 10 J/T

z z

z

dB F
dz μ

−

−
×= = =
×

 

EVALUATE:   The two spin components are deflected in opposite directions. 
 41.61. IDENTIFY:   Apply Eq. (41.36). 

SET UP:   Decay from a 3d to 2 p state in hydrogen means that 3 2 andn n= → =  
2, 1, 0 1, 0.l lm m= ± ± → = ±  However, selection rules limit the possibilities for decay. The emitted photon 

carries off one unit of angular momentum so l  must change by 1 and hence lm  must change by 0 or 1.±   
EXECUTE:   The shift in the transition energy from the zero field value is 

3 2 3 2B( ) ( ),
2l l l l
e BU m m B m m

m
μ= − = −=  where 

3lm  is the 3 ld m  value and 
2lm  is the 2 lp m  value. Thus 

there are only three different energy shifts. The shifts and the transitions that have them, labeled by the lm  
values, are: 

: 2 1,1 0, 0 1. 0:1 1,  0 0, 1 1. : 0 1, 1 0, 2 1.
2 2
e B e B

m m
→ → → − → → − → − − → − → − → −= =  

EVALUATE:   Our results are consistent with Figure 41.15 in the textbook. 
 41.62. IDENTIFY:   The presence of an external magnetic field shifts the energy levels up or down, depending 

upon the value of .lm  
SET UP:   The selection rules tell us that for allowed transitions, 1lΔ =  and 0 or 1.lmΔ = ±  

EXECUTE:   (a) –15 8/ (4.136 10 eV s)(3.00 10 m/s)/(475.082 nm) 2.612 eV.E hc λ= = × ⋅ × =  
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(b) For allowed transitions, 1lΔ =  and 0 or 1.lmΔ = ± For the 3d state, 3, 2,n l= =  and lm can have the 
values 2,1, 0, –1, – 2.  In the 2p state, 2, 1,n l= =  and lm  can be 1, 0, –1.  Therefore the 9 allowed 
transitions from the 3d state in the presence of a magnetic field are: 

2, 2  1, 1l ll m l m= = → = =  
2, 1  1, 0l ll m l m= = → = =  
2, 1  1, 1l ll m l m= = → = =  
2, 0  1, 0l ll m l m= = → = =  
2, 0  1, 1l ll m l m= = → = =  
2, 0  1, 1l ll m l m= = → = = −  
2, 1  1, 0l ll m l m= = − → = =  
2, 1  1, 1l ll m l m= = − → = = −  
2, 2  1, 1l ll m l m= = − → = = −  

(c) 5
B (5.788 10 eV/T)(3.500 T) 0.000203 eVE µ B −Δ = = × =  

So the energies of the new states are –8.50000 eV 0 and –8.50000 eV 0.000203 eV,+ ±  giving energies 
of: –8.50020 eV, –8.50000 eV and –8.49980 eV.  
(d) The energy differences of the allowed transitions are equal to the energy differences if no magnetic 
field were present (2.61176 eV, from part (a)), and that value E±Δ  (0.000203 eV, from part (c)). 
Therefore we get the following: 
For 2.61176 eV: 475.082 nmE λ= =  (which was given) 
For 2.61176 eV 0.000203 eV 2.611963 eV:E = + =  

15 8/ (4.136 10 eV s)(3.00 10 m/s)/(2.611963 eV) 475.045 nmhc Eλ −= = × ⋅ × =  

For 2.61176 eV 0.000203 eV 2.61156 eV:E = − =  
–15 8/ (4.136 10 eV s)(3.00 10 m/s)/(2.61156 eV) 475.119 nmhc Eλ = = × ⋅ × =  

EVALUATE:   Even a strong magnetic field produces small changes in the energy levels, and hence in the 
wavelengths of the emitted light. 

 41.63. IDENTIFY:   The presence of an external magnetic field shifts the energy levels up or down, depending 
upon the value of .lm  
SET UP:   The energy difference due to the magnetic field is BE µ BΔ =  and the energy of a photon is 

/ .E hc λ=  
EXECUTE:   For the p state, 0 or 1,lm = ±  and for the s state 0. lm =  Between any two adjacent lines, 

B .E µ BΔ =  Since the change in the wavelength ( )λΔ  is very small, the energy change ( )EΔ  is also very 

small, so we can use differentials. / .E hc λ=  2
hcdE dλ
λ

=  and 2 .hcE λ
λ
ΔΔ =  Since B ,E µ BΔ =  we get 

2B
hcB λμ

λ
Δ=  and 2 .

B

hc
B

λ
μ λ

Δ
=  

15 8 5 2(4.136 10 eV s)(3.00 10 m/s)(0.0462 nm)/(5.788 10 eV/T)(575.050 nm) 3.00 TB − −= × ⋅ × × =  
EVALUATE:   Even a strong magnetic field produces small changes in the energy levels, and hence in the 
wavelengths of the emitted light. 

 41.64. IDENTIFY:   Apply Eq. (41.36). Problem 39.86c says / / ,E Eλ λΔ = Δ  when these quantities are small. 

SET UP:   5
B 5.79 10  eV/Tμ −= ×  

EXECUTE:   (a) The energy shift from zero field is 0 B .lU m BμΔ =  
5 4

0For 2, (2)(5.79 10 eV/T)(1.40 T) 1.62 10 eV.lm U − −= Δ = × = ×  
5 5

0For 1, (1)(5.79 10 eV/T)(1.40 T) 8.11 10  eV.lm U − −= Δ = × = ×  
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(b) 0
0

,
E

Eλ λ
Δ

Δ =  where 7
0 0

36 1(13.6 eV)((1/4) (1/9)), 6.563 10 m
5

E
R

λ −⎛ ⎞= − = = ×⎜ ⎟
⎝ ⎠

 

4 5 5and 1.62 10 eV 8.11 10 eV 8.09 10 eV from part (a).E − − −Δ = × − × = ×  Then, 
112.81 10  m 0.0281 nm.λ −Δ = × =  The wavelength corresponds to a larger energy change, and so the 

wavelength is smaller. 
EVALUATE:   5/ (0.0281 nm)/(656 nm) 4.3 10 .λ λ −Δ = = ×  /λ λΔ  is very small and the approximate 
expression from Problem 39.86c is very accurate. 

 41.65. IDENTIFY:   The ratio according to the Boltzmann distribution is given by Eq. (39.18): 1 0( )/1

0
,E E kTn e

n
− −=  

where 1 is the higher energy state and 0 is the lower energy state. 

SET UP:   The interaction energy with the magnetic field is 2 00232
2z s
eU B m B
m

μ ⎛ ⎞= − = . ⎜ ⎟
⎝ ⎠

=
 (Example 41.6.). 

The energy of the 1
2sm = +  level is increased and the energy of the 1

2sm = −  level is decreased. 

1/ 2 1/ 2( )/1/2

1/2

U U kTn e
n

−− −

−
=  

EXECUTE:   1/2 1/2 B
1 12 00232 2 00232 2 00232

2 2 2 2
e eU U B B B
m m

μ−
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = . − − = . = .⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

= =  

B(2 00232) /1/2

1/2

B kTn e
n

μ− .

−
=  

(a) 55 00 10  TB −= . ×  
24 2 5 232 00232(9 274 10  A/m )(5 00 10  T) / ([1 381 10  J/K][300 K])1/2

1/2

n e
n

− − −− . . × . × . ×

−
=  

72 24 10 71/2

1/2
0 99999978 1 2 2 10n e

n
−− . × −

−
= = . = − . ×  

(b) 
35 2 24 101/2

1/2
5 00 10  T, 0 9978nB e

n
−− − . ×

−
= . × = = .  

(c) 
25 2 24 101/2

1/2
5 00 10  T, 0 978nB e

n
−− − . ×

−
= . × = = .  

EVALUATE:   For small fields the energy separation between the two spin states is much less than kT for 
300 KT =  and the states are equally populated. For 5 00 TB = .  the energy spacing is large enough for 

there to be a small excess of atoms in the lower state. 

 41.66. IDENTIFY:   The magnetic field at the center of a current loop of radius r is 0
2

IB
r

μ
= (Eq. 28.17). 

.
2

vI e
rπ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

SET UP:   Using Eq. (41.22), ( 1) .L mvr l l= = + =  The Bohr radius from Eq. (39.11) is 2
0.n a  

EXECUTE:   
34

5
2 31 11

0

( 1) 2(6.63 10 J s) 7.74 10 m/s.
( ) 2 (9.11 10 kg)(4)(5.29 10 m)

l l
v

m n a π

−

− −
+ × ⋅= = = ×

× ×
=

 The magnetic field 

generated by the “moving” proton at the electron’s position is 
19 5

70 0
2 2 11 2

(1.60 10 C)(7.74 10 m/s)
(10  T m/A) 0.277 T.

2 4 (4) (5.29 10 m)
I ev

B
r r

μ μ
π

−
−

−
× ×

= = = ⋅ =
×

 

EVALUATE:   The effective magnetic field calculated in Example 41.7 for 3p electrons in sodium is much 
larger than the value we calculated for 2p electrons in hydrogen. 
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 41.67. IDENTIFY and SET UP:   sm  can take on 4 different values: 3 1 1 3, , , .
2 2 2 2sm = − − +  +  Each lnlm  state can 

have 4 electrons, each with one of the four different sm  values. Apply the exclusion principle to determine 
the electron configurations. 
EXECUTE:   (a) For a filled 1n =  shell, the electron configuration would be 41 ;s  four electrons and 4.Z =  

For a filled 2n =  shell, the electron configuration would be 4 4 121 2 2 ;s s p  twenty electrons and 20.Z =  

(b) Sodium has 11;Z =  11 electrons. The ground-state electron configuration would be 4 4 31 2 2 .s s p  
EVALUATE:   The chemical properties of each element would be very different. 

 41.68. IDENTIFY:   Apply Eq. (41.43) and Eq. (41.26), with 2e  replaced by 2.Ze  The photon wavelength λ  is 

related to the transition energy EΔ  for the atom by .hcE
λ

Δ =  

SET UP:   For 6N ,+  7.Z =  

EXECUTE:   (a) 2 2( 13.6 eV) (7) ( 13.6 eV) 666 eV.Z − = − = −  
(b) The negative of the result of part (a), 666 eV. 
(c) The radius of the ground state orbit is inversely proportional to the nuclear charge, and 

10 12(0.529 10 m)/7 7.56 10 m.a
Z

− −= × = ×  

(d) 
0 2 2

,
1 1
1 2

hc hc
E E

λ = =
Δ ⎛ ⎞−⎜ ⎟

⎝ ⎠

 where 0E  is the energy found in part (b), and 2.49 nm.λ =  

EVALUATE:   For hydrogen, the wavelength of the photon emitted in this transition is 122 nm (Section 39.3). 
The wavelength for 6N +  is smaller by a factor of 27 .  

 41.69. (a) IDENTIFY and SET UP:   The energy of the photon equals the transition energy of the atom: 
/ .E hc λΔ = The energies of the states are given by Eq. (41.21). 

EXECUTE:   2
13 60 eV

nE
n

.= −  so 2
13 60 V

4
eE .= −  and 1

13 60 eV
1

E .= −  

19 18
2 1

1 313 60 eV 1 (13 60 eV) 10 20 eV (10 20 eV)(1 602 10 J/eV) 1 634 10 J
4 4

E E E − −⎛ ⎞Δ = − = . − + = . = . = . . × = . ×⎜ ⎟
⎝ ⎠

34 8
7

18
(6 626 10  J s)(2 998 10  m/s) 1 22 10  m 122 nm

1 634 10  J
hc

E
λ

−
−

−
. × ⋅ . ×= = = . × =

Δ . ×
 

(b) IDENTIFY and SET UP:   Calculate the change in EΔ  due to the orbital magnetic interaction energy,  
Eq. (41.36), and relate this to the shift λΔ  in the photon wavelength. 
EXECUTE:   The shift of a level due to the energy of interaction with the magnetic field in the z-direction is 

B .lU m Bμ=  The ground state has 0lm =  so is unaffected by the magnetic field. The 2n =  initial state has 

1lm = −  so its energy is shifted downward an amount 24 2
B ( 1)(9 274 10  A/m )(2 20 T)lU m Bμ −= = − . × . =  

23 19 4( 2 040 10  J)(1 eV/1 602 10  J) 1 273 10  eV.− − −− . × . × = . ×  
Note that the shift in energy due to the magnetic field is a very small fraction of the 10.2 eV transition 
energy. Problem 39.86c shows that in this situation / / .E Eλ λΔ = Δ  This gives 

4
31 273 10  eV/ 122 nm 1 52 10  nm 1 52 pm.

10 2 eV
E Eλ λ

−
−⎛ ⎞. ×Δ = Δ = = . × = .⎜ ⎟⎜ ⎟.⎝ ⎠

 

EVALUATE:   The upper level in the transition is lowered in energy so the transition energy is decreased.  
A smaller EΔ  means a larger ;λ  the magnetic field increases the wavelength. The fractional shift in 

wavelength, /λ λΔ  is small, only 51 2 10 .−. ×  
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 41.70. IDENTIFY:   Apply Eq. (41.36), where B is the effective magnetic field. .hcE
λ

Δ =  

SET UP:   B .
2 4
e eh
m m

μ
π

= ==  

EXECUTE:   The effective field is that which gives rise to the observed difference in the energy level 

transition, 1 2 1 2

B B 1 2 1 2

4 .E hc mcB
e

λ λ π λ λ
μ μ λ λ λ λ

⎛ ⎞ ⎛ ⎞Δ − −= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 Substitution of numerical values gives 

37.28 10 T.B −= ×  
EVALUATE:   The effective magnetic field we have calculated is much smaller than that calculated for 
sodium in Example 41.7. 

 41.71. IDENTIFY:   Estimate the atomic transition energy and use Eq. (39.5) to relate this to the photon 
wavelength. 
(a) SET UP:   vanadium, 23Z =  
minimum wavelength; corresponds to largest transition energy 
EXECUTE:   The highest occupied shell is the N shell ( 4).n =  The highest energy transition is ,N K→  

with transition energy .N KE E EΔ = −  Since the shell energies scale like 21/n  neglect NE  relative to ,KE  

so 2 2 3 15( 1) (13 6 eV) (23 1) (13 6 eV) 6 582 10  eV 1 055 10  J.KE E Z −Δ = = − . = − . = . × = . ×  The energy of the 
emitted photon equals this transition energy, so the photon’s wavelength is given by 

/  so / .E hc hc Eλ λΔ = = Δ  
34 8

10
15

(6 626 10  J s)(2 998 10  m/s) 1 88 10  m 0 188 nm.
1 055 10  J

λ
−

−
−

. × ⋅ . ×= = . × = .
. ×

 

SET UP:   maximum wavelength; corresponds to smallest transition energy, so for the Kα  transition 
EXECUTE:   The frequency of the photon emitted in this transition is given by Moseley’s law (Eq. 41.47): 

15 2 15 2 18(2 48 10  Hz)( 1) (2 48 10  Hz)(23 1) 1 200 10  Hzf Z= . × − = . × − = . ×  
8

10
18

2 998 10  m/s 2 50 10  m 0 250 nm
1 200 10  Hz

c
f

λ −. ×= = = . × = .
. ×

 

(b) rhenium, 45Z =  
Apply the analysis of part (a), just with this different value of Z. 
minimum wavelength 

2 2 4 15( 1) (13 6 eV) (45 1) (13 6 eV) 2 633 10  eV 4 218 10  J.KE E Z −Δ = = − . = − . = . × = . ×  
34 8

11
15

(6.626 10 J . s)(2 998 10  m/s)/ 4 71 10  m 0 0471 nm.
4 218 10  J

hc Eλ
−

−
−

× . ×= Δ = = . × = .
. ×

 

maximum wavelength 
15 2 15 2 18(2 48 10  Hz)( 1) (2 48 10  Hz)(45 1) 4 801 10  Hzf Z= . × − = . × − = . ×  

8
11

18
2 998 10  m/s 6 24 10  m 0 0624 nm
4 801 10  Hz

c
f

λ −. ×= = = . × = .
. ×

 

EVALUATE:   Our calculated wavelengths have values corresponding to x rays. The transition energies 
increase when Z increases and the photon wavelengths decrease. 

 41.72. IDENTIFY:   The interaction energy for an electron in a magnetic field is ,zU Bμ= −  where zμ  is given by 
Eq. (41.40). 
SET UP:   zSΔ = =  

EXECUTE:   (a) 2(2.00232) .
2 z
e e hc mcE B S B B
m m e

π
λ λ

Δ = Δ ≈ = ⇒ ==  

(b) 
31 8

19
2 (9.11 10 kg)(3.00 10 m/s) 0.307 T.

(0.0350 m)(1.60 10 C)
B π −

−
× ×= =

×
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EVALUATE:   As shown in Figure 41.18 in the textbook, the lower state in the transition has 1
2sm = −  and 

the upper state has 1
2 .sm = +  

 41.73. IDENTIFY and SET UP:   The potential 21( )
2

U x k x= ′  is that of a simple harmonic oscillator. Treated 

quantum mechanically (see Section 40.5) each energy state has energy ( )1
2 .nE nω= +=  Since electrons 

obey the exclusion principle, this allows us to put two electrons (one for each 1
2sm = ± ) for every value of 

n—each quantum state is then defined by the ordered pair of quantum numbers ( , ).sn m  
EXECUTE:   By placing two electrons in each energy level the lowest energy is 

1 1 1 1

0 0 0 0

1 1 ( 1)( )2 2 2 2
2 2 2 2

N N N N

n
n n n n

N N NE n nω ω ω
− − − −

= = = =

⎛ ⎞ ⎛ ⎞ ⎡ ⎤ −⎛ ⎞ ⎡ ⎤= + = + = + =⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎣ ⎦⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦
∑ ∑ ∑ ∑= = =  

2 2 2[ ] .kN N N N N
m

ω ω ′− + = == = =  Here we realize that the first value of n is zero and the last value of 

n is –1,N  giving us a total of N energy levels filled. 

EVALUATE:   The minimum energy for one electron moving in this potential is 1
2 ,ω=  with .k

m
ω ′=  For 

2N electrons the minimum energy is larger than ( )1
2(2 ) ,N ω=  because only two electrons can be put into 

each energy state. For example, for 2N =  (4 electrons), there are two electrons in the 1
2E ω= =  energy 

state and two in the 3
2 ω=  state, for a total energy of ( ) ( )31

2 22 2 4 ,ω ω ω+ == = =  which is in agreement with 

our general result. 
 41.74. IDENTIFY and SET UP:   Apply Newton’s second law and Bohr’s quantization to one of the electrons. 

EXECUTE:   (a) Apply Coulomb’s law to the orbiting electron and set it equal to the centripetal force. 
There is an attractive force with charge +2e a distance r away and a repulsive force a distance 2r away. So, 

2

2 2
0 0

( 2 )( ) ( )( ) .
4 4 (2 )

e e e e mv
rr rπ π

+ − − − −+ =
� �

 But, from the quantization of angular momentum in the first Bohr orbit, 

.L mvr v
mr

= = ⇒ = ==  So 

2

2 2 2 2

2 2 3
0 0

2
4 4 (2 )

m
e e mv mr

r rr r mrπ π

⎛ ⎞− ⎜ ⎟− − ⎝ ⎠+ = = = −

=
=

� �
 

2 2
0

2 3
7 4 .

4
e
r mr

π−
⇒ = −

=�  

2
10 110

02
4 4 4 4 (0.529 10 m) 3.02 10 m.
7 7 7

r a
me
π − −⎛ ⎞

= = = × = ×⎜ ⎟⎜ ⎟
⎝ ⎠

=�  And 

34
6

31 10
0

7 7 (1.054 10 J s) 3.83 10 m/s.
4 4 (9.11 10 kg)(0.529 10 m)

v
mr ma

−

− −
× ⋅= = = = ×

× ×
= =  

(b) 2 31 6 2 1712 9.11 10 kg (3.83 10 m/s) 1.34 10 J 83.5 eV.
2

K mv − −⎛ ⎞= = × × = × =⎜ ⎟
⎝ ⎠

 

(c) 
2 2 2 2 2

17

0 0 0 0 0

2 4 72 2.67 10 J 166.9 eV
4 4 (2 ) 4 4 (2 ) 2 4

e e e e eU
r r r r rπ π π π π

−⎛ ⎞ ⎛ ⎞− − −= + = + = = − × = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠� � � � �

 

(d) [ 166.9 eV 83.5 eV] 83.4 eV,E∞ = − − + =  which is only off by about 5%  from the real value of 79.0 eV. 
EVALUATE:   The ground state energy of helium in this model is 83.4 eV.K U+ = −  The ground state energy 
of +He  is 4( 13.6 eV) 54.4 eV.− = −  Therefore, the energy required to remove one electron from helium in 
this model is ( 83.4 eV 54.4 eV) 29.0 eV.− − + =  The experimental value for this quantity is 24.6 eV. 
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 41.75. IDENTIFY and SET UP:   In the expression for the turning points and in the wave function replace a by /a Z  
EXECUTE:   (a) The radius is inversely proportional to Z, so the classical turning radius is 2 / .a Z  

(b) The normalized wave function is /
1 3 3

1( )
/

Zr a
s r e

a Z
ψ

π
−=  and the probability of the electron being 

found outside the classical turning point is 2 2 2 / 2
1 3 32 / 2 /

44 .
/

Zr a
sa Z a z

P r dr e r dr
a Z

ψ π
∞ ∞ −= =∫ ∫  Making the 

change of variable / , ( / )u Zr a dr a Z du= =  changes the integral to 2 2
2

4 ,uP e u du
∞ −= ∫ which is independent 

of Z. The probability is that found in Problem 41.53, 0.238, independent of Z. 
EVALUATE:   The probability of the electron being in the classically forbidden region is independent of Z. 



 

 

 


